Nonlinear Time Domain Modeling and Simulation of Surface and Embedded NPPS

Boris Jeremić

with contributions from

Federico Pisanò, Jose Abell, Kohei Watanabe, Chao Luo

University of California, Davis Lawrence Berkeley National Laboratory, Berkeley

> DOE NPH, October 2014

Outline

Introduction

Motivation

Modeling Uncertainty

ESSI Modeling

Modeling Issues

3D, Inclined, Body and Surface Seismic Waves

Nonlinear Material Behavior

Summary

•000

Outline

Introduction

Motivation

Motivation

- Improving seismic design (safety and economy) for Nuclear Facilities (NFs)
- Earthquake Soil Structure Interaction (ESSI) in time and space, plays a major role in successes and failures
- Accurate following and directing (!) the flow of seismic energy in ESSI system to optimize ESSI system for
 - Safety and
 - Economy
- Development of high fidelity numerical modeling and simulation tools to analyze realistic ESSI behavior, Real ESSI Simulator

Predictive Capabilities

- Verification provides evidence that the model is solved correctly. Mathematics issue.
- Validation provides evidence that the correct model is solved. Physics issue.
- Prediction: use of computational model to foretell the state of a physical system under consideration under conditions for which the computational model has not been validated.
- ➤ Real ESSI Simulator: a software, hardware and documentation system for high fidelity, high performance, time domain, nonlinear, 3D, finite element modeling and simulation of earthquake-soil/rock-structure interaction of Nuclear Facilities (NFs)

Seismic Energy Input and Dissipation for NFs

- Seismic waves input (flux) into SSI system
- Mechanical dissipation outside of SSI domain:
 - reflected (surface, NF) wave radiation
 - SSI (NF) system oscillation radiation
- Mechanical dissipation/conversion inside SSI domain:
 - plasticity of soil and rock
 - nonlinear contact zone (foundation soil/rock)
 - plasticity/damage of structure, foundation
 - viscous coupling of porous solid with pore fluid (soil)
 - viscous coupling of structure/foundation with fluids
- ► Numerical energy dissipation/production

ESSI Modeling

Summary

Modeling Uncertainty

Outline

Introduction

Motivation

Modeling Uncertainty

ESSI Modeling

Modeling Issues

3D, Inclined, Body and Surface Seismic Waves

Nonlinear Material Behavior

Summar

Modeling Uncertainty

Modeling Uncertainty

- Real ESSI goal: reduction of modeling uncertainty
- Simplified modeling: important features are neglected (structure complexity, 6D ground motions, non-linearities)
- Modeling Uncertainty: unnecessary and unrealistic modeling simplifications
- Modeling simplifications are justifiable if one or two level higher sophistication model shows that features being simplified out are not important

Modeling Uncertainty

Complexity and Uncertainty in Motions and Material

- ► 6D (3 translations (horizontal and vertical), 3 rotations)
- Sources of uncertainties in ground motions (Source, Path (rock), soil (rock))
- Most engineering materials and components experience inelastic deformations for service and hazard loads
- Pressure sensitive materials (soil, rock, concrete, &c.) have complex constitutive response, tying together nonlinear stress-strain with volume response
- In addition, man-made and natural materials are spatially variable and their material modeling parameters are uncertain

Modeling Uncertainty

SPT Based Determination of Young's Modulus

Transformation of SPT *N*-value \rightarrow 1-D Young's modulus, *E* (cf. Phoon and Kulhawy (1999B))

Histogram of the residual (w.r.t the deterministic transformation equation) Young's modulus, along with fitted probability density function

Modeling Issues

Outline

ntroduction
Motivation
Modeling Uncertainty

ESSI Modeling Modeling Issues

3D, Inclined, Body and Surface Seismic Waves Nonlinear Material Behavior

Summary

Important Issues for ESSI Modeling and Simulation

- Verification and Validation
- ▶ 6D, inclined, body and surface seismic waves
- Uncorrelated (incoherent) motions
- ▶ Nonlinear material (soil, rock, concrete, steel, &c.)
- Nonlinear foundation-soil/rock contact (dry and saturated),
 slip gap
- Saturated dense vs loose soil with buoyant forces
- Isolators, dissipators

Modeling Issues

ESSI Models

Detailed high fidelity models taking into account all of the issues

Modeling Issues

In Detail: Main ESSI Issues for SMRs

Outline

Introduction

Motivation

Modeling Uncertainty

ESSI Modeling

Modeling Issues

3D, Inclined, Body and Surface Seismic Waves

Nonlinear Material Behavior

Summary

Real Earthquake Ground Motions

- ► Body waves: P and S waves
- Inclined waves
- Surface waves: Rayleigh, Love waves, &c.
- ► 6D waves (3 translations, 3 rotations)
- Surface waves carry most seismic energy
- Lack of correlation (incoherence)

3D, Body and Surface Seismic Waves

horizontal accelerations

0.2km

UCDAVIS L-B-N-L

Body and Surface Wave Animations

- ► Homogeneous soil/rock, 45^{deg} off vertical
- ► Homogeneous soil/rock, 45^{deg} off vertical, motion vectors
- ► Homogeneous soil/rock, 45^{deg} off vertical, motion vectors, NPP location

Outline

ntroduction
Motivation
Modeling Uncertainty

ESSI Modeling

Modeling Issues
3D, Inclined, Body and Surface Seismic Waves
Nonlinear Material Behavior

Summary

Validation: Lotung, LSST07, G/G_{max} and Damping

- Nonlinear, 3D elastic-plastic, Pisanò material model for Lotung (validation)
- 1D wave propagation, only LSST07 is close to 1D!
- No volume change data (a serious issue!)

Validation: Lotung, LSST07, Downhole Motions

Validation: Lotung, LSST07, Fourier Spectra

NPP with Base Slip and Gap

 Low friction zone between concrete foundation and soil/rock

 Inclined, 3D, body and surface, seismic wave field (wavelets: Ricker, Ormsby; real seismic, &c.)

vertical

Acc. Response for a Full 3D (at 45°) Ricker Wavelet

Slipping Response and Energy Dissipated (45° Ricker)

Gaping Response (45° Ricker Wavelet)

Summary

Summary

- Earthquake Soil Structure Interaction, in time domain, nonlinear, uncertain, plays a decisive role in seismic performance of Nuclear Facilities
- Improve design and retrofits (safety and economy) through high fidelity, physics based modeling and simulation
- Real ESSI Simulator System, verified (extensive) and validated (not so extensive), for modeling and simulations used for design, retrofits and regulatory decision making
- Education and training of users (designers, regulators, owners) proves essential

Summary

Acknowledgement

- Funding from and collaboration with the US-NRC, US-DOE, US-NSF, CNSC, LLNL, INL, AREVA NP GmbH, and Shimizu Corp. is greatly appreciated,
- Collaborators: Dr. Budnitz (LBNL), Dr. Kammerer (Bechtel Corp.), Prof. Whittaker (UB), Mr. Orbović (CNSC), Prof. Pisanò (TU Delft), Prof. Sett (UB), and UCD students: Mr. Abell, Mr. Jeong, Mr. Kamranimoghadam, Mr. Karapiperis, Mr. Watanabe, Mr. Chao, Dr. Tafazzoli,

